Electrical properties and magnetic response of cobalt germanosilicide nanowires.

نویسندگان

  • Chun-I Tsai
  • Chiu-Yen Wang
  • Jianshi Tang
  • Min-Hsiu Hung
  • Kang L Wang
  • Lih-Juann Chen
چکیده

The effects of partial substitution of Ge for Si in cobalt germanosilicide (CoSi(1-x)Ge(x) and Co(2)Si(1-x)Ge(x)) nanowires (NWs) on the electrical transport, magnetic properties, and magnetoresistance (MR) have been investigated. Cobalt germanosilicide NWs were synthesized by a spontaneous chemical vapor transport growth method. The Ge concentration can be selectively controlled from 0 to 15% and 0-50% for CoSi(1-x)Ge(x) and Co(2)Si(1-x)Ge(x) NWs, respectively, by varying the reaction temperature. Electrical measurements showed that the resistivities of CoSi(1-x)Ge(x) NWs are 90, 60, 30, and 23 μΩ-cm for x = 0, 0.01, 0.05, and 0.15, respectively. Therefore, the electrical resistivity of CoSi(1-x)Ge(x) NWs was found to decrease significantly with an increasing Ge concentration, which is believed to be a result of the band gap narrowing. On the other hand, the Co(2)Si(1-x)Ge(x) (x ≤ 0.5) NWs exhibited ferromagnetism at 300 K, which is attributed to the uncoordinated Co atoms on the NW surface and spin-glass behavior at low temperature. The highest MR response of Co(2)Si(1-x)Ge(x) NWs occurred at x = 0.5, where a MR ratio of 11.7% can be obtained at 10-25 K with a magnetic field of 8 T. The enhanced physical properties of cobalt germanosilicide NWs with Ge substitution shall lead to promising application in the fabrication of nanodevices, including spintronics and serving as the gate and interconnect material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties of Ni0.3Fe0.7 Alloy Nanowires

The effect of length variation on the magnetic properties of NiFe alloy nanowires electrodeposited into the alumina template was investigated. The diameter (45±2.5 nm) and length (~ 1.9, 7.12, 8.3, 9.5 and 13.3 µm) of the nanowires were estimated from scanning electron microscopy images. Energy dispersive spectroscopy results showed Ni3Fe7 composition of the alloy nanowire...

متن کامل

Investigations of Microstructures and Magnetic Properties through Off-time between Pulses and Controlled Cu Content in Pulse Electrodeposited NiCu Nanowires

NiCu alloy nanowires arrays were embedded into the anodic aluminum oxide (AAO) template by ac-pulse electrodeposition. Different off-time were used in electrolyte with constant concentration of Ni and Cu and acidity of 3. The effect of deposition parameters on alloy contents was investigated by studying the microstructure and magnetic properties of as-deposited NiCu alloy nanowires. Atomic forc...

متن کامل

Optimization of the FeCo nanowire fabrication embedded in anodic aluminum oxide template by response surface methodology

Anodic aluminum oxide (AAO) fabricated by two step anodization technique, is used as a template to synthesize FeCo nanowire arrays by AC electrodeposition technique. Response surface methodology (RSM) is applied to design the experiments, fit an empirical model and optimize the conditions to achieve the best magnetic properties. The magnetic properties, pore dimensions, composition and structur...

متن کامل

Cobalt silicide nanocables grown on Co films: synthesis and physical properties.

Single-crystalline cobalt silicide/SiO(x) nanocables have been grown on Co thin films on an SiO(2) layer by a self-catalysis process via vapor-liquid-solid mechanism. The nanocables consist of a core of CoSi nanowires and a silicon oxide shell with a length of several tens of micrometers. In the confined space in the oxide shell, the CoSi phase is stable and free from agglomeration in samples a...

متن کامل

Investigations of Magnetic Properties Through Electrodeposition Current and Controlled Cu Content in Pulse Electrodeposited CoFeCu Nanowires

CoFeCu nanowires were deposited by pulsed electrodeposition technique into the porous alumina templates by a two-step mild anodization technique, using the single-bath method. The electrodeposition was performed in a constant electrolyte while Cu constant was controlled by electrodeposition current. The electrodeposition current was 3.5, 4.25, 5 and 6 mA. The effect of electrodeposition current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 2011